0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB4 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > y) {
int t = x;
x = y;
y = t;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 12 rules for P and 2 rules for R.
Combined rules. Obtained 1 rules for P and 0 rules for R.
Filtered ground terms:
575_0_main_Load(x1, x2, x3, x4) → 575_0_main_Load(x2, x3, x4)
Cond_575_0_main_Load(x1, x2, x3, x4, x5) → Cond_575_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
575_0_main_Load(x1, x2, x3) → 575_0_main_Load(x2, x3)
Cond_575_0_main_Load(x1, x2, x3, x4) → Cond_575_0_main_Load(x1, x3, x4)
Combined rules. Obtained 1 rules for P and 0 rules for R.
Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((x1[0] < x0[0] →* TRUE)∧(x1[0] →* x1[1])∧(x0[0] →* x0[1]))
(1) -> (0), if ((x0[1] →* x1[0])∧(x1[1] →* x0[0]))
(1) (x0[1]=x1[0]∧x1[1]=x0[0]∧<(x1[0], x0[0])=TRUE∧x1[0]=x1[1]1∧x0[0]=x0[1]1 ⇒ 575_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧575_0_MAIN_LOAD(x1[0], x0[0])≥COND_575_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])∧(UIncreasing(COND_575_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥))
(2) (<(x1[0], x0[0])=TRUE ⇒ 575_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧575_0_MAIN_LOAD(x1[0], x0[0])≥COND_575_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])∧(UIncreasing(COND_575_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥))
(3) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_575_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] + [(-1)bni_11]x1[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(4) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_575_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] + [(-1)bni_11]x1[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(5) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_575_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] + [(-1)bni_11]x1[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_575_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_575_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(8) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_575_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(9) (<(x1[0], x0[0])=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1]∧x0[1]=x1[0]1∧x1[1]=x0[0]1 ⇒ COND_575_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_575_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥575_0_MAIN_LOAD(x0[1], x1[1])∧(UIncreasing(575_0_MAIN_LOAD(x0[1], x1[1])), ≥))
(10) (<(x1[0], x0[0])=TRUE ⇒ COND_575_0_MAIN_LOAD(TRUE, x1[0], x0[0])≥NonInfC∧COND_575_0_MAIN_LOAD(TRUE, x1[0], x0[0])≥575_0_MAIN_LOAD(x0[0], x1[0])∧(UIncreasing(575_0_MAIN_LOAD(x0[1], x1[1])), ≥))
(11) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(575_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[(-1)bso_14] + [2]x0[0] + [-2]x1[0] ≥ 0)
(12) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(575_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[(-1)bso_14] + [2]x0[0] + [-2]x1[0] ≥ 0)
(13) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(575_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[(-1)bso_14] + [2]x0[0] + [-2]x1[0] ≥ 0)
(14) (x0[0] ≥ 0 ⇒ (UIncreasing(575_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] + [2]x0[0] ≥ 0)
(15) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(575_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] + [2]x0[0] ≥ 0)
(16) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(575_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] + [2]x0[0] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = 0
POL(575_0_MAIN_LOAD(x1, x2)) = [-1] + x2 + [-1]x1
POL(COND_575_0_MAIN_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x2
POL(<(x1, x2)) = [-1]
COND_575_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 575_0_MAIN_LOAD(x0[1], x1[1])
575_0_MAIN_LOAD(x1[0], x0[0]) → COND_575_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])
COND_575_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 575_0_MAIN_LOAD(x0[1], x1[1])
575_0_MAIN_LOAD(x1[0], x0[0]) → COND_575_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer